TEES	-) Tee (SOC/SOC/SOC)	∰ Tee (FL/FL/FL)	_)≝(_ Tee (SOC/SOC/FL)	_) Tee (SOC/SP/FL)	Tee (SP/SP/SP)	Tee (SP/SP/FL)	FITTINGS
ТАР	ERS	−)>>(− Taper (SOC/SOC)	Taper (concentric) (FL/FL)	Taper (eccentric) (FL/FL)	- ◯> Taper (SP/FL)	Taper (SP/SP)	
BENDS	11¼	(11¼° Bend (SOC/SOC)	\鬥 11¼° Bend (FL/FL)	22½	22½° Bend (SOC/SOC)	() 22½° Bend (FL/FL)	
	45	45° Bend (SOC/SOC)	H∳ 45° Bend (FL/FL)	90	90° Bend (SOC/SOC)	90° Bend (FL/FL)	
CONNE	CTORS	−)=(− Connector (SOC/SOC)	⊨(– Connector (FL/SOC)	│ ⊐ Connector (FL/SP)	GIBA	ULT	 ✓ Gibault
END	CAPS	—]≪ End Cap	–∣k€ Blank Flange				
	SER/ ACER	(1) i⊨→i Riser (FL/FL)	WY	ΈS) Wye (Soc/Soc/Soc)	Wye (FI/FI/FL)	

FH	—)⊕(— Prop. —)⊖(— Exist. Fire Hydrant (SOC/SOC)	
SV	-)►(- Open -)►(- Closed Sluice Valve (SOC/SOC)	ID → I Open ID → I Closed Sluice Valve (FL/FL)
ScV	-)☆(- open -)☆(- Closed Scour Valve (SOC/SOC)	└── Open └── Closed Scour Valve (FL/FL)
AV	_)_Ŷ_(Air Valve (SOC/SOC)	┝┻ Air Valve (FL/FL)

FALL THR	OU	GH MANHOLE	(FIBRE	GLASS	BASE)	
MANHOLE DESC.	DIAGRAM	Λ	MIN	MIN. DROP (mm)		
Straight through		→- <u>()</u>	>		20	
Deflection up to 40°	þ	→O <u>`</u>			30	
Deflection 40°-90°		$\rightarrow Q$			40	
Branch <40Ø		>>			30	
Branch 40° - 90°		$\xrightarrow{\checkmark} \longrightarrow$		40		
MAIN AND BRAN	СН	VARY IN DIA.				
MAIN DIA.		BRANCH DIA			MIN DROP (mm)	
300		225			80	
300		150	\mathcal{A}		150	
300		100	\rightarrow	\longrightarrow	200	
225		150			80	
225		100			130	
150		100	1		50	

NOTE: For House Drains & Concrete Manhole Bases refer CMDG Std Dwg SD-S-027A

VERTICAL BENDS						
ANGLE	CHANGE OF GRADIENT	FITTING				
45°	100.00%	Std Bend				
22.5°	41.40%	Std Bend				
11.25°	19.90%	Std Bend				
6°	10.50%	Std Connector				
3°	5.20%	All M&F Joints				

Γ	
[.	ŀ
L	1

SEWER/WATE

FITTING AND E

INFORMATION

REVISIONS		DATE	DISCLAIMER.	Capricorn Municipal Development Guidelines		
			The authors and sponsoring organisations shall have no liability or responsibility to the user or any other person or entity with respect to any liability, loss or damage caused or alleged to be caused, directly or	Incorporating:		
D) IRC ADDED	11/2016	indirectly, by the adoption and use of these Standard Drawings including, but nor limited to, any interruption of service, loss of business or	Banana Shire Council (BSC)	Livingstone Shire Council (LSC)	
C	GRC AND LSC ADDED	09/2014	anticipatory profits, of consequential damages resulting from the use of these Standard Drawings. Persons must not rely on these Standard	Central Highlands Regional Council (CHRC) Gladstone Regional Council (GRC)	Maranoa Regional Council (MRC) Rockhampton Regional Council (RRC)	
E	3 FALL THROUGH MANHOLE TABLE AMENDED	02/2013	Drawings as the equivalent of, or a substitute for, project-specific design	Isaac Regional Council (IRC)	Rockhampton Regional Council (RRC)	
A	A POST AMALGAMATION REVIEW		and assessment by an appropriately qualified professional.			

FITTINGS SCHEDULE DESCRIPTION QTY DETAIL ID SIZE Tee (FI/FI/FI) (1) 3 (2) 2 Gibault N/A 11¹/₄° Bend (Soc/Soc) 7 3 11¹/₄° Bend (FI/FI) 1 0 22¹/₂° Bend (Soc/Soc) N/A 2 õ 45° Bend (Soc/Soc) N/A 1 N/A 90° Bend (Soc/Soc) 1 N/A Connector (Soc/Soc) 2 **(4**) Connector (FI/Soc) 7 5 3 Connector (FI/Spig) 6 Sluice Valve (FI/FI) 7 3 N/A Scour Valve (Soc/Soc) 2 S Air Valve (Soc/Soc) N/A 2 (7) 2 End Cap (8) Misc. 375 x 300 Taper 1

SEWED DISING MAINS (DDESSUDE)

HORIZONTAL BENDS					
CHANGE OF ANGLE	STD FITTINGS				
78.75°	45° + 22.5° + 11.25° Bend				
67.5°	45° + 22.5° Bend				
56.25°	45° + 11.25° Bend				
45°	45° Bend				
33.75°	22.5° Bend + 11.25° Bend				
22.5°	22.5° Bend				
11.25°	11.25° Bend				
6°	Connector				
1°	Pipe Joint				

SEWER GRAVITY MAINS (NON PRESSURE)				
PIPE DIA	MIN GRADIENT			
150	0.667% (1 in 150)			
225	0.345% (1 in 290)			
300	0.238% (1 in 420)			
375	0.175% (1 in 570)			
450	0.133% (1 in 750)			

6°	
3°	

(FI/FI/FL)

SEWER RISING MAINS (PRESSURE)				
DIRECTION	MIN GRADIENT			
Up	0.200% (1 in 500)			
Down	0.400% (1 in 250)			

RECYCLED EFFLUENT MAIN CONSTRUCTION NOTES

All recycled water mains to be on 1.8m alignment unless otherwise noted. Recycled water mains shall be RRJ to AS1477 Series 2 (lilac colour) Material Class 400. uPVC Class 12, mPVC Class 16 or oPVC Class 16. Minimum cover to recycled water mains to be 900mm for road pavements

and 600mm elsewhere. Sluice Valves are to be clockwise closing.

Place detectable marker tape in trench approx. 300 mm above pipe.

WATER CONSTRUCTION NOTES

All water mains to be on 2.5m alignment unless otherwise noted.

Water mains shall be RRJ to AS1477 Series 2 (blue colour) uPVC Class 12, mPVC Class 16 or oPVC Class 16. Material Class 400.

Minimum cover to Water mains shall be 900mm for road pavements and 600mm elsewhere.

Concrete thrust blocks to be constructed in accordance with Std. Dwg. CMDG-W-041.

Water Sluice Valves are to be anti-clockwise closing.

Hydrant box as per Std. Dwg. CMDG-W-061 to be provided with 0.6m turf surround. Hydrant markers to be blue rrpm's (stimsonite or equiv) positioned offset on crown of road & fixed in accordance with manufacturers

recommendations. Refer Std. Dwg. CMDG-W-062. Hydrants & valves to be installed in accordance with Std. Dwg.

CMDG-W-060.

2.

3.

4

5.

2.

3.

4.

6.

7.

8.

1.

2.

3

4.

5.

7.

8.

9.

2

3

4.

5.

6.

7.

8.

9.

10.

11.

13.

Place detectable marker tape in trench approx. 300 mm above pipe.

SEWER RISING MAIN CONSTRUCTION NOTES

All sewer rising mains to be on 1.8m alignment unless otherwise noted. Sewer rising mains shall be RRJ to AS1477 Series 2 (cream or grey colour) Material Class 400. uPVC Class 12, mPVC Class 16 or oPVC Class 16. Minimum cover to rising main to be 900mm for road pavements and 600mm elsewhere.

Concrete thrust blocks to be constructed in accordance with Std. Dwg. CMDG-W-041.

Scour Valves to be installed in accordance with Std. Dwg. CMDG-S-073. Air Valves to be installed in accordance with Std. Dwg. CMDG-S-072. Valves to be installed in accordance with Std. Dwg. CMDG-W-060 and provided with 600mm turf surround.

Valves to be fitted with a concrete surround 50mm above natural surface

Backfilling of all driveway and road crossings to be cement stabilised. 10. Sluice Valves are to be clockwise closing.

11. Place detectable marker tape in trench approx. 300 mm above pipe.

SEWER GRAVITY MAIN CONSTRUCTION NOTES

1. All sewers to be on 1.5m alignment from front and back boundaries or 1.0m from side boundaries, unless noted otherwise.

All 150 diam. sewer pipes shall be uPVC Class SN8 up to 3m deep (cream or grey colour) to AS1260. Refer to sewerage longitudinal sections for sewer diameters.

Manhole locations shall be pegged by surveyor prior to construction. Finished manhole top levels to be confirmed on site. Generally top of finished MH should be 75mm above surrounding finished surface levels. Manhole lids to be Class C or D.

Provide a 1.5m long star picket driven 0.5m into the ground within 200mm of the ends of each house connection.

Plastic warning tape 0.3mm thick x 50mm wide shall be attached to the top of the jump-up and wired to the base of the star picket.

Sewer manholes to be precast and minimum 1050Ø. Concrete manholes to be in accordance with Std. Dwg. CMDG-S-021.

Lamphole to be constructed in accordance with Std. Dwg. CMDG-S-026. Bases to be fibreglass complas type.

House connections to be constructed in accordance with Std. Dwg. CMDG-S-030.

12. Provide concrete stops in accordance with Std. Dwg. CMDG-S-090 on slopes greater than 1 on 6.

Maximum manhole spacing to be 90m. Maximum lamphole segment to be 40m.

14. Place detectable marker tape in trench approx. 300 mm above pipe. 15. Trench compaction to be 85%.

APPLICABILITY TABLE							
Council	BSC	CHRC	GRC	IRC	LSC	MRC	RRC
Applicable	Yes	Yes	Yes	Yes	Yes	Yes	Yes

	STANDARD					
RMAIN INFORMATION	STANDARD					
BEND SYMBOLS, PIPE	DRAWING					
AND GENERAL NOTES	CMDG-W-005					
	REV. A B C D					